One Hat Cyber Team
Your IP:
216.73.216.102
Server IP:
198.54.114.155
Server:
Linux server71.web-hosting.com 4.18.0-513.18.1.lve.el8.x86_64 #1 SMP Thu Feb 22 12:55:50 UTC 2024 x86_64
Server Software:
LiteSpeed
PHP Version:
5.6.40
Create File
|
Create Folder
Execute
Dir :
~
/
home
/
fluxyjvi
/
.cagefs
/
tmp
/
Edit File:
phph8llvi
Calculator/GmpCalculator.php 0000644 00000004420 15107326727 0012115 0 ustar 00 <?php declare(strict_types=1); namespace Brick\Math\Internal\Calculator; use Brick\Math\Internal\Calculator; /** * Calculator implementation built around the GMP library. * * @internal * * @psalm-immutable */ class GmpCalculator extends Calculator { public function add(string $a, string $b) : string { return \gmp_strval(\gmp_add($a, $b)); } public function sub(string $a, string $b) : string { return \gmp_strval(\gmp_sub($a, $b)); } public function mul(string $a, string $b) : string { return \gmp_strval(\gmp_mul($a, $b)); } public function divQ(string $a, string $b) : string { return \gmp_strval(\gmp_div_q($a, $b)); } public function divR(string $a, string $b) : string { return \gmp_strval(\gmp_div_r($a, $b)); } public function divQR(string $a, string $b) : array { [$q, $r] = \gmp_div_qr($a, $b); return [ \gmp_strval($q), \gmp_strval($r) ]; } public function pow(string $a, int $e) : string { return \gmp_strval(\gmp_pow($a, $e)); } public function modInverse(string $x, string $m) : ?string { $result = \gmp_invert($x, $m); if ($result === false) { return null; } return \gmp_strval($result); } public function modPow(string $base, string $exp, string $mod) : string { return \gmp_strval(\gmp_powm($base, $exp, $mod)); } public function gcd(string $a, string $b) : string { return \gmp_strval(\gmp_gcd($a, $b)); } public function fromBase(string $number, int $base) : string { return \gmp_strval(\gmp_init($number, $base)); } public function toBase(string $number, int $base) : string { return \gmp_strval($number, $base); } public function and(string $a, string $b) : string { return \gmp_strval(\gmp_and($a, $b)); } public function or(string $a, string $b) : string { return \gmp_strval(\gmp_or($a, $b)); } public function xor(string $a, string $b) : string { return \gmp_strval(\gmp_xor($a, $b)); } public function sqrt(string $n) : string { return \gmp_strval(\gmp_sqrt($n)); } } Calculator/BcMathCalculator.php 0000644 00000002766 15107326727 0012543 0 ustar 00 <?php declare(strict_types=1); namespace Brick\Math\Internal\Calculator; use Brick\Math\Internal\Calculator; /** * Calculator implementation built around the bcmath library. * * @internal * * @psalm-immutable */ class BcMathCalculator extends Calculator { public function add(string $a, string $b) : string { return \bcadd($a, $b, 0); } public function sub(string $a, string $b) : string { return \bcsub($a, $b, 0); } public function mul(string $a, string $b) : string { return \bcmul($a, $b, 0); } public function divQ(string $a, string $b) : string { return \bcdiv($a, $b, 0); } /** * @psalm-suppress InvalidNullableReturnType * @psalm-suppress NullableReturnStatement */ public function divR(string $a, string $b) : string { return \bcmod($a, $b, 0); } public function divQR(string $a, string $b) : array { $q = \bcdiv($a, $b, 0); $r = \bcmod($a, $b, 0); assert($r !== null); return [$q, $r]; } public function pow(string $a, int $e) : string { return \bcpow($a, (string) $e, 0); } public function modPow(string $base, string $exp, string $mod) : string { return \bcpowmod($base, $exp, $mod, 0); } /** * @psalm-suppress InvalidNullableReturnType * @psalm-suppress NullableReturnStatement */ public function sqrt(string $n) : string { return \bcsqrt($n, 0); } } Calculator/NativeCalculator.php 0000644 00000032665 15107326730 0012626 0 ustar 00 <?php declare(strict_types=1); namespace Brick\Math\Internal\Calculator; use Brick\Math\Internal\Calculator; /** * Calculator implementation using only native PHP code. * * @internal * * @psalm-immutable */ class NativeCalculator extends Calculator { /** * The max number of digits the platform can natively add, subtract, multiply or divide without overflow. * For multiplication, this represents the max sum of the lengths of both operands. * * In addition, it is assumed that an extra digit can hold a carry (1) without overflowing. * Example: 32-bit: max number 1,999,999,999 (9 digits + carry) * 64-bit: max number 1,999,999,999,999,999,999 (18 digits + carry) */ private int $maxDigits; /** * @codeCoverageIgnore */ public function __construct() { switch (PHP_INT_SIZE) { case 4: $this->maxDigits = 9; break; case 8: $this->maxDigits = 18; break; default: throw new \RuntimeException('The platform is not 32-bit or 64-bit as expected.'); } } public function add(string $a, string $b) : string { /** * @psalm-var numeric-string $a * @psalm-var numeric-string $b */ $result = $a + $b; if (is_int($result)) { return (string) $result; } if ($a === '0') { return $b; } if ($b === '0') { return $a; } [$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b); $result = $aNeg === $bNeg ? $this->doAdd($aDig, $bDig) : $this->doSub($aDig, $bDig); if ($aNeg) { $result = $this->neg($result); } return $result; } public function sub(string $a, string $b) : string { return $this->add($a, $this->neg($b)); } public function mul(string $a, string $b) : string { /** * @psalm-var numeric-string $a * @psalm-var numeric-string $b */ $result = $a * $b; if (is_int($result)) { return (string) $result; } if ($a === '0' || $b === '0') { return '0'; } if ($a === '1') { return $b; } if ($b === '1') { return $a; } if ($a === '-1') { return $this->neg($b); } if ($b === '-1') { return $this->neg($a); } [$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b); $result = $this->doMul($aDig, $bDig); if ($aNeg !== $bNeg) { $result = $this->neg($result); } return $result; } public function divQ(string $a, string $b) : string { return $this->divQR($a, $b)[0]; } public function divR(string $a, string $b): string { return $this->divQR($a, $b)[1]; } public function divQR(string $a, string $b) : array { if ($a === '0') { return ['0', '0']; } if ($a === $b) { return ['1', '0']; } if ($b === '1') { return [$a, '0']; } if ($b === '-1') { return [$this->neg($a), '0']; } /** @psalm-var numeric-string $a */ $na = $a * 1; // cast to number if (is_int($na)) { /** @psalm-var numeric-string $b */ $nb = $b * 1; if (is_int($nb)) { // the only division that may overflow is PHP_INT_MIN / -1, // which cannot happen here as we've already handled a divisor of -1 above. $r = $na % $nb; $q = ($na - $r) / $nb; assert(is_int($q)); return [ (string) $q, (string) $r ]; } } [$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b); [$q, $r] = $this->doDiv($aDig, $bDig); if ($aNeg !== $bNeg) { $q = $this->neg($q); } if ($aNeg) { $r = $this->neg($r); } return [$q, $r]; } public function pow(string $a, int $e) : string { if ($e === 0) { return '1'; } if ($e === 1) { return $a; } $odd = $e % 2; $e -= $odd; $aa = $this->mul($a, $a); /** @psalm-suppress PossiblyInvalidArgument We're sure that $e / 2 is an int now */ $result = $this->pow($aa, $e / 2); if ($odd === 1) { $result = $this->mul($result, $a); } return $result; } /** * Algorithm from: https://www.geeksforgeeks.org/modular-exponentiation-power-in-modular-arithmetic/ */ public function modPow(string $base, string $exp, string $mod) : string { // special case: the algorithm below fails with 0 power 0 mod 1 (returns 1 instead of 0) if ($base === '0' && $exp === '0' && $mod === '1') { return '0'; } // special case: the algorithm below fails with power 0 mod 1 (returns 1 instead of 0) if ($exp === '0' && $mod === '1') { return '0'; } $x = $base; $res = '1'; // numbers are positive, so we can use remainder instead of modulo $x = $this->divR($x, $mod); while ($exp !== '0') { if (in_array($exp[-1], ['1', '3', '5', '7', '9'])) { // odd $res = $this->divR($this->mul($res, $x), $mod); } $exp = $this->divQ($exp, '2'); $x = $this->divR($this->mul($x, $x), $mod); } return $res; } /** * Adapted from https://cp-algorithms.com/num_methods/roots_newton.html */ public function sqrt(string $n) : string { if ($n === '0') { return '0'; } // initial approximation $x = \str_repeat('9', \intdiv(\strlen($n), 2) ?: 1); $decreased = false; for (;;) { $nx = $this->divQ($this->add($x, $this->divQ($n, $x)), '2'); if ($x === $nx || $this->cmp($nx, $x) > 0 && $decreased) { break; } $decreased = $this->cmp($nx, $x) < 0; $x = $nx; } return $x; } /** * Performs the addition of two non-signed large integers. */ private function doAdd(string $a, string $b) : string { [$a, $b, $length] = $this->pad($a, $b); $carry = 0; $result = ''; for ($i = $length - $this->maxDigits;; $i -= $this->maxDigits) { $blockLength = $this->maxDigits; if ($i < 0) { $blockLength += $i; /** @psalm-suppress LoopInvalidation */ $i = 0; } /** @psalm-var numeric-string $blockA */ $blockA = \substr($a, $i, $blockLength); /** @psalm-var numeric-string $blockB */ $blockB = \substr($b, $i, $blockLength); $sum = (string) ($blockA + $blockB + $carry); $sumLength = \strlen($sum); if ($sumLength > $blockLength) { $sum = \substr($sum, 1); $carry = 1; } else { if ($sumLength < $blockLength) { $sum = \str_repeat('0', $blockLength - $sumLength) . $sum; } $carry = 0; } $result = $sum . $result; if ($i === 0) { break; } } if ($carry === 1) { $result = '1' . $result; } return $result; } /** * Performs the subtraction of two non-signed large integers. */ private function doSub(string $a, string $b) : string { if ($a === $b) { return '0'; } // Ensure that we always subtract to a positive result: biggest minus smallest. $cmp = $this->doCmp($a, $b); $invert = ($cmp === -1); if ($invert) { $c = $a; $a = $b; $b = $c; } [$a, $b, $length] = $this->pad($a, $b); $carry = 0; $result = ''; $complement = 10 ** $this->maxDigits; for ($i = $length - $this->maxDigits;; $i -= $this->maxDigits) { $blockLength = $this->maxDigits; if ($i < 0) { $blockLength += $i; /** @psalm-suppress LoopInvalidation */ $i = 0; } /** @psalm-var numeric-string $blockA */ $blockA = \substr($a, $i, $blockLength); /** @psalm-var numeric-string $blockB */ $blockB = \substr($b, $i, $blockLength); $sum = $blockA - $blockB - $carry; if ($sum < 0) { $sum += $complement; $carry = 1; } else { $carry = 0; } $sum = (string) $sum; $sumLength = \strlen($sum); if ($sumLength < $blockLength) { $sum = \str_repeat('0', $blockLength - $sumLength) . $sum; } $result = $sum . $result; if ($i === 0) { break; } } // Carry cannot be 1 when the loop ends, as a > b assert($carry === 0); $result = \ltrim($result, '0'); if ($invert) { $result = $this->neg($result); } return $result; } /** * Performs the multiplication of two non-signed large integers. */ private function doMul(string $a, string $b) : string { $x = \strlen($a); $y = \strlen($b); $maxDigits = \intdiv($this->maxDigits, 2); $complement = 10 ** $maxDigits; $result = '0'; for ($i = $x - $maxDigits;; $i -= $maxDigits) { $blockALength = $maxDigits; if ($i < 0) { $blockALength += $i; /** @psalm-suppress LoopInvalidation */ $i = 0; } $blockA = (int) \substr($a, $i, $blockALength); $line = ''; $carry = 0; for ($j = $y - $maxDigits;; $j -= $maxDigits) { $blockBLength = $maxDigits; if ($j < 0) { $blockBLength += $j; /** @psalm-suppress LoopInvalidation */ $j = 0; } $blockB = (int) \substr($b, $j, $blockBLength); $mul = $blockA * $blockB + $carry; $value = $mul % $complement; $carry = ($mul - $value) / $complement; $value = (string) $value; $value = \str_pad($value, $maxDigits, '0', STR_PAD_LEFT); $line = $value . $line; if ($j === 0) { break; } } if ($carry !== 0) { $line = $carry . $line; } $line = \ltrim($line, '0'); if ($line !== '') { $line .= \str_repeat('0', $x - $blockALength - $i); $result = $this->add($result, $line); } if ($i === 0) { break; } } return $result; } /** * Performs the division of two non-signed large integers. * * @return string[] The quotient and remainder. */ private function doDiv(string $a, string $b) : array { $cmp = $this->doCmp($a, $b); if ($cmp === -1) { return ['0', $a]; } $x = \strlen($a); $y = \strlen($b); // we now know that a >= b && x >= y $q = '0'; // quotient $r = $a; // remainder $z = $y; // focus length, always $y or $y+1 for (;;) { $focus = \substr($a, 0, $z); $cmp = $this->doCmp($focus, $b); if ($cmp === -1) { if ($z === $x) { // remainder < dividend break; } $z++; } $zeros = \str_repeat('0', $x - $z); $q = $this->add($q, '1' . $zeros); $a = $this->sub($a, $b . $zeros); $r = $a; if ($r === '0') { // remainder == 0 break; } $x = \strlen($a); if ($x < $y) { // remainder < dividend break; } $z = $y; } return [$q, $r]; } /** * Compares two non-signed large numbers. * * @return int [-1, 0, 1] */ private function doCmp(string $a, string $b) : int { $x = \strlen($a); $y = \strlen($b); $cmp = $x <=> $y; if ($cmp !== 0) { return $cmp; } return \strcmp($a, $b) <=> 0; // enforce [-1, 0, 1] } /** * Pads the left of one of the given numbers with zeros if necessary to make both numbers the same length. * * The numbers must only consist of digits, without leading minus sign. * * @return array{string, string, int} */ private function pad(string $a, string $b) : array { $x = \strlen($a); $y = \strlen($b); if ($x > $y) { $b = \str_repeat('0', $x - $y) . $b; return [$a, $b, $x]; } if ($x < $y) { $a = \str_repeat('0', $y - $x) . $a; return [$a, $b, $y]; } return [$a, $b, $x]; } } Calculator.php 0000644 00000045661 15107326730 0007366 0 ustar 00 <?php declare(strict_types=1); namespace Brick\Math\Internal; use Brick\Math\Exception\RoundingNecessaryException; use Brick\Math\RoundingMode; /** * Performs basic operations on arbitrary size integers. * * Unless otherwise specified, all parameters must be validated as non-empty strings of digits, * without leading zero, and with an optional leading minus sign if the number is not zero. * * Any other parameter format will lead to undefined behaviour. * All methods must return strings respecting this format, unless specified otherwise. * * @internal * * @psalm-immutable */ abstract class Calculator { /** * The maximum exponent value allowed for the pow() method. */ public const MAX_POWER = 1000000; /** * The alphabet for converting from and to base 2 to 36, lowercase. */ public const ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyz'; /** * The Calculator instance in use. */ private static ?Calculator $instance = null; /** * Sets the Calculator instance to use. * * An instance is typically set only in unit tests: the autodetect is usually the best option. * * @param Calculator|null $calculator The calculator instance, or NULL to revert to autodetect. */ final public static function set(?Calculator $calculator) : void { self::$instance = $calculator; } /** * Returns the Calculator instance to use. * * If none has been explicitly set, the fastest available implementation will be returned. * * @psalm-pure * @psalm-suppress ImpureStaticProperty */ final public static function get() : Calculator { if (self::$instance === null) { /** @psalm-suppress ImpureMethodCall */ self::$instance = self::detect(); } return self::$instance; } /** * Returns the fastest available Calculator implementation. * * @codeCoverageIgnore */ private static function detect() : Calculator { if (\extension_loaded('gmp')) { return new Calculator\GmpCalculator(); } if (\extension_loaded('bcmath')) { return new Calculator\BcMathCalculator(); } return new Calculator\NativeCalculator(); } /** * Extracts the sign & digits of the operands. * * @return array{bool, bool, string, string} Whether $a and $b are negative, followed by their digits. */ final protected function init(string $a, string $b) : array { return [ $aNeg = ($a[0] === '-'), $bNeg = ($b[0] === '-'), $aNeg ? \substr($a, 1) : $a, $bNeg ? \substr($b, 1) : $b, ]; } /** * Returns the absolute value of a number. */ final public function abs(string $n) : string { return ($n[0] === '-') ? \substr($n, 1) : $n; } /** * Negates a number. */ final public function neg(string $n) : string { if ($n === '0') { return '0'; } if ($n[0] === '-') { return \substr($n, 1); } return '-' . $n; } /** * Compares two numbers. * * @return int [-1, 0, 1] If the first number is less than, equal to, or greater than the second number. */ final public function cmp(string $a, string $b) : int { [$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b); if ($aNeg && ! $bNeg) { return -1; } if ($bNeg && ! $aNeg) { return 1; } $aLen = \strlen($aDig); $bLen = \strlen($bDig); if ($aLen < $bLen) { $result = -1; } elseif ($aLen > $bLen) { $result = 1; } else { $result = $aDig <=> $bDig; } return $aNeg ? -$result : $result; } /** * Adds two numbers. */ abstract public function add(string $a, string $b) : string; /** * Subtracts two numbers. */ abstract public function sub(string $a, string $b) : string; /** * Multiplies two numbers. */ abstract public function mul(string $a, string $b) : string; /** * Returns the quotient of the division of two numbers. * * @param string $a The dividend. * @param string $b The divisor, must not be zero. * * @return string The quotient. */ abstract public function divQ(string $a, string $b) : string; /** * Returns the remainder of the division of two numbers. * * @param string $a The dividend. * @param string $b The divisor, must not be zero. * * @return string The remainder. */ abstract public function divR(string $a, string $b) : string; /** * Returns the quotient and remainder of the division of two numbers. * * @param string $a The dividend. * @param string $b The divisor, must not be zero. * * @return array{string, string} An array containing the quotient and remainder. */ abstract public function divQR(string $a, string $b) : array; /** * Exponentiates a number. * * @param string $a The base number. * @param int $e The exponent, validated as an integer between 0 and MAX_POWER. * * @return string The power. */ abstract public function pow(string $a, int $e) : string; /** * @param string $b The modulus; must not be zero. */ public function mod(string $a, string $b) : string { return $this->divR($this->add($this->divR($a, $b), $b), $b); } /** * Returns the modular multiplicative inverse of $x modulo $m. * * If $x has no multiplicative inverse mod m, this method must return null. * * This method can be overridden by the concrete implementation if the underlying library has built-in support. * * @param string $m The modulus; must not be negative or zero. */ public function modInverse(string $x, string $m) : ?string { if ($m === '1') { return '0'; } $modVal = $x; if ($x[0] === '-' || ($this->cmp($this->abs($x), $m) >= 0)) { $modVal = $this->mod($x, $m); } [$g, $x] = $this->gcdExtended($modVal, $m); if ($g !== '1') { return null; } return $this->mod($this->add($this->mod($x, $m), $m), $m); } /** * Raises a number into power with modulo. * * @param string $base The base number; must be positive or zero. * @param string $exp The exponent; must be positive or zero. * @param string $mod The modulus; must be strictly positive. */ abstract public function modPow(string $base, string $exp, string $mod) : string; /** * Returns the greatest common divisor of the two numbers. * * This method can be overridden by the concrete implementation if the underlying library * has built-in support for GCD calculations. * * @return string The GCD, always positive, or zero if both arguments are zero. */ public function gcd(string $a, string $b) : string { if ($a === '0') { return $this->abs($b); } if ($b === '0') { return $this->abs($a); } return $this->gcd($b, $this->divR($a, $b)); } /** * @return array{string, string, string} GCD, X, Y */ private function gcdExtended(string $a, string $b) : array { if ($a === '0') { return [$b, '0', '1']; } [$gcd, $x1, $y1] = $this->gcdExtended($this->mod($b, $a), $a); $x = $this->sub($y1, $this->mul($this->divQ($b, $a), $x1)); $y = $x1; return [$gcd, $x, $y]; } /** * Returns the square root of the given number, rounded down. * * The result is the largest x such that x² ≤ n. * The input MUST NOT be negative. */ abstract public function sqrt(string $n) : string; /** * Converts a number from an arbitrary base. * * This method can be overridden by the concrete implementation if the underlying library * has built-in support for base conversion. * * @param string $number The number, positive or zero, non-empty, case-insensitively validated for the given base. * @param int $base The base of the number, validated from 2 to 36. * * @return string The converted number, following the Calculator conventions. */ public function fromBase(string $number, int $base) : string { return $this->fromArbitraryBase(\strtolower($number), self::ALPHABET, $base); } /** * Converts a number to an arbitrary base. * * This method can be overridden by the concrete implementation if the underlying library * has built-in support for base conversion. * * @param string $number The number to convert, following the Calculator conventions. * @param int $base The base to convert to, validated from 2 to 36. * * @return string The converted number, lowercase. */ public function toBase(string $number, int $base) : string { $negative = ($number[0] === '-'); if ($negative) { $number = \substr($number, 1); } $number = $this->toArbitraryBase($number, self::ALPHABET, $base); if ($negative) { return '-' . $number; } return $number; } /** * Converts a non-negative number in an arbitrary base using a custom alphabet, to base 10. * * @param string $number The number to convert, validated as a non-empty string, * containing only chars in the given alphabet/base. * @param string $alphabet The alphabet that contains every digit, validated as 2 chars minimum. * @param int $base The base of the number, validated from 2 to alphabet length. * * @return string The number in base 10, following the Calculator conventions. */ final public function fromArbitraryBase(string $number, string $alphabet, int $base) : string { // remove leading "zeros" $number = \ltrim($number, $alphabet[0]); if ($number === '') { return '0'; } // optimize for "one" if ($number === $alphabet[1]) { return '1'; } $result = '0'; $power = '1'; $base = (string) $base; for ($i = \strlen($number) - 1; $i >= 0; $i--) { $index = \strpos($alphabet, $number[$i]); if ($index !== 0) { $result = $this->add($result, ($index === 1) ? $power : $this->mul($power, (string) $index) ); } if ($i !== 0) { $power = $this->mul($power, $base); } } return $result; } /** * Converts a non-negative number to an arbitrary base using a custom alphabet. * * @param string $number The number to convert, positive or zero, following the Calculator conventions. * @param string $alphabet The alphabet that contains every digit, validated as 2 chars minimum. * @param int $base The base to convert to, validated from 2 to alphabet length. * * @return string The converted number in the given alphabet. */ final public function toArbitraryBase(string $number, string $alphabet, int $base) : string { if ($number === '0') { return $alphabet[0]; } $base = (string) $base; $result = ''; while ($number !== '0') { [$number, $remainder] = $this->divQR($number, $base); $remainder = (int) $remainder; $result .= $alphabet[$remainder]; } return \strrev($result); } /** * Performs a rounded division. * * Rounding is performed when the remainder of the division is not zero. * * @param string $a The dividend. * @param string $b The divisor, must not be zero. * @param int $roundingMode The rounding mode. * * @throws \InvalidArgumentException If the rounding mode is invalid. * @throws RoundingNecessaryException If RoundingMode::UNNECESSARY is provided but rounding is necessary. * * @psalm-suppress ImpureFunctionCall */ final public function divRound(string $a, string $b, int $roundingMode) : string { [$quotient, $remainder] = $this->divQR($a, $b); $hasDiscardedFraction = ($remainder !== '0'); $isPositiveOrZero = ($a[0] === '-') === ($b[0] === '-'); $discardedFractionSign = function() use ($remainder, $b) : int { $r = $this->abs($this->mul($remainder, '2')); $b = $this->abs($b); return $this->cmp($r, $b); }; $increment = false; switch ($roundingMode) { case RoundingMode::UNNECESSARY: if ($hasDiscardedFraction) { throw RoundingNecessaryException::roundingNecessary(); } break; case RoundingMode::UP: $increment = $hasDiscardedFraction; break; case RoundingMode::DOWN: break; case RoundingMode::CEILING: $increment = $hasDiscardedFraction && $isPositiveOrZero; break; case RoundingMode::FLOOR: $increment = $hasDiscardedFraction && ! $isPositiveOrZero; break; case RoundingMode::HALF_UP: $increment = $discardedFractionSign() >= 0; break; case RoundingMode::HALF_DOWN: $increment = $discardedFractionSign() > 0; break; case RoundingMode::HALF_CEILING: $increment = $isPositiveOrZero ? $discardedFractionSign() >= 0 : $discardedFractionSign() > 0; break; case RoundingMode::HALF_FLOOR: $increment = $isPositiveOrZero ? $discardedFractionSign() > 0 : $discardedFractionSign() >= 0; break; case RoundingMode::HALF_EVEN: $lastDigit = (int) $quotient[-1]; $lastDigitIsEven = ($lastDigit % 2 === 0); $increment = $lastDigitIsEven ? $discardedFractionSign() > 0 : $discardedFractionSign() >= 0; break; default: throw new \InvalidArgumentException('Invalid rounding mode.'); } if ($increment) { return $this->add($quotient, $isPositiveOrZero ? '1' : '-1'); } return $quotient; } /** * Calculates bitwise AND of two numbers. * * This method can be overridden by the concrete implementation if the underlying library * has built-in support for bitwise operations. */ public function and(string $a, string $b) : string { return $this->bitwise('and', $a, $b); } /** * Calculates bitwise OR of two numbers. * * This method can be overridden by the concrete implementation if the underlying library * has built-in support for bitwise operations. */ public function or(string $a, string $b) : string { return $this->bitwise('or', $a, $b); } /** * Calculates bitwise XOR of two numbers. * * This method can be overridden by the concrete implementation if the underlying library * has built-in support for bitwise operations. */ public function xor(string $a, string $b) : string { return $this->bitwise('xor', $a, $b); } /** * Performs a bitwise operation on a decimal number. * * @param 'and'|'or'|'xor' $operator The operator to use. * @param string $a The left operand. * @param string $b The right operand. */ private function bitwise(string $operator, string $a, string $b) : string { [$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b); $aBin = $this->toBinary($aDig); $bBin = $this->toBinary($bDig); $aLen = \strlen($aBin); $bLen = \strlen($bBin); if ($aLen > $bLen) { $bBin = \str_repeat("\x00", $aLen - $bLen) . $bBin; } elseif ($bLen > $aLen) { $aBin = \str_repeat("\x00", $bLen - $aLen) . $aBin; } if ($aNeg) { $aBin = $this->twosComplement($aBin); } if ($bNeg) { $bBin = $this->twosComplement($bBin); } switch ($operator) { case 'and': $value = $aBin & $bBin; $negative = ($aNeg and $bNeg); break; case 'or': $value = $aBin | $bBin; $negative = ($aNeg or $bNeg); break; case 'xor': $value = $aBin ^ $bBin; $negative = ($aNeg xor $bNeg); break; // @codeCoverageIgnoreStart default: throw new \InvalidArgumentException('Invalid bitwise operator.'); // @codeCoverageIgnoreEnd } if ($negative) { $value = $this->twosComplement($value); } $result = $this->toDecimal($value); return $negative ? $this->neg($result) : $result; } /** * @param string $number A positive, binary number. */ private function twosComplement(string $number) : string { $xor = \str_repeat("\xff", \strlen($number)); $number ^= $xor; for ($i = \strlen($number) - 1; $i >= 0; $i--) { $byte = \ord($number[$i]); if (++$byte !== 256) { $number[$i] = \chr($byte); break; } $number[$i] = "\x00"; if ($i === 0) { $number = "\x01" . $number; } } return $number; } /** * Converts a decimal number to a binary string. * * @param string $number The number to convert, positive or zero, only digits. */ private function toBinary(string $number) : string { $result = ''; while ($number !== '0') { [$number, $remainder] = $this->divQR($number, '256'); $result .= \chr((int) $remainder); } return \strrev($result); } /** * Returns the positive decimal representation of a binary number. * * @param string $bytes The bytes representing the number. */ private function toDecimal(string $bytes) : string { $result = '0'; $power = '1'; for ($i = \strlen($bytes) - 1; $i >= 0; $i--) { $index = \ord($bytes[$i]); if ($index !== 0) { $result = $this->add($result, ($index === 1) ? $power : $this->mul($power, (string) $index) ); } if ($i !== 0) { $power = $this->mul($power, '256'); } } return $result; } }
Simpan